The impact of non-synonymous mutations on miRNA binding sites within the SARS-CoV-2 NSP3 and NSP4 genes

0
35


  • Bartel, D. P. Metazoan micrornas. Cell. 173(1), 20–51 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox, J. E. & Sullivan, C. S. Balance and stealth: the role of noncoding RNAs in the regulation of virus gene expression. Annu. Rev. Virol. 1, 89–109 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Pawlica, P. et al. SARS-CoV-2 expresses a microRNA-like small RNA able to selectively repress host genes. Proc. Natl. Acad. Sci. 118(52), 1 (2021).

    Article 

    Google Scholar
     

  • Schult, P. et al. microRNA-122 amplifies hepatitis C virus translation by shaping the structure of the internal ribosomal entry site. Nat. Commun. 9(1), 1–14 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Scheel, T. K. et al. A broad RNA virus survey reveals both miRNA dependence and functional sequestration. Cell Host Microbe. 19(3), 409–423 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tenoever, B. R. RNA viruses and the host microRNA machinery. Nat. Rev. Microbiol. 11(3), 1 (2013).

    Article 

    Google Scholar
     

  • Trobaugh, D. W. et al. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature. 506(7487), 245–248 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosseini Rad, S. M. Implications of SARS-CoV-2 mutations for genomic RNA structure and host microRNA targeting. Int. J. Mol. Sci. 21(13), 4807 (2020).

    Article 

    Google Scholar
     

  • Gupta, S. K., Bang, C. & Thum, T. Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ. Cardiovasc. Genet. 3(5), 484–488 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, W. et al. Association of miR-197-5p, a circulating biomarker for heart failure, with myocardial fibrosis and adverse cardiovascular events among patients with stage C or D heart failure. Cardiology. 141(4), 212–225 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulte, C. et al. miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PloS One. 10(12), e0145930 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Condorelli, G., Latronico, M. V. & Dorn, G. W. microRNAs in heart disease: putative novel therapeutic targets?. Eur. Heart J. 31(6), 649–658 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, P. & Zhang, W. MicroRNA-18b* induces apoptosis in cardiomyocytes through targeting Topoisomerase 1 (TOP1). Int. J. Clin. Exp. Med. 10(4), 6742–6748 (2017).

    CAS 

    Google Scholar
     

  • Tijsen, A. J. et al. MiR423-5p as a circulating biomarker for heart failure. Circ. Res. 106(6), 1035 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. miR-197 expression in peripheral blood mononuclear cells from hepatitis B virus-infected patients. Gut Liver. 7(3), 335 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, W.-F. et al. Host microRNA miR-197 plays a negative regulatory role in the enterovirus 71 infectious cycle by targeting the RAN protein. J. Virol. 90(3), 1424–1438 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Reciprocal control of miR-197 and IL-6/STAT3 pathway reveals miR-197 as potential therapeutic target for hepatocellular carcinoma. Oncoimmunology. 4(10), e1031440 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weseslindtner, L. et al. Micro RNA s mir-106a, mir-122 and mir-197 are increased in severe acute viral hepatitis with coagulopathy. Liver Int. 36(3), 353–360 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. M., Yu, Y. & Zhao, H. P. EBV-BART-6-3p and cellular microRNA-197 compromise the immune defense of host cells in EBV-positive Burkitt lymphoma. Mol. Med. Rep. 15(4), 1877–1883 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, F., Loo, J. F. C., Kong, S. K., Li, B. & Gu, D. Identification of serum MicroRNAs as diagnostic biomarkers for influenza H7N9 infection. Virol. Rep. 7, 1–8 (2017).


    Google Scholar
     

  • Duy, J. et al. Circulating microRNA profiles of Ebola virus infection. Sci. Rep. 6(1), 1–13 (2016).

    Article 

    Google Scholar
     

  • Yang, Z. et al. Hepatitis B virus X protein enhances hepatocarcinogenesis by depressing the targeting of NUSAP1 mRNA by miR-18b. Cancer Biol. Med. 16(2), 276 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, L. et al. Dynamic expression of viral and cellular microRNAs in infectious mononucleosis caused by primary Epstein-Barr virus infection in children. Virol. J. 12(1), 1–11 (2015).

    Article 

    Google Scholar
     

  • Rashad, N. M., El-Shal, A. S., Shalaby, S. M. & Mohamed, S. Y. Serum miRNA-27a and miRNA-18b as potential predictive biomarkers of hepatitis C virus-associated hepatocellular carcinoma. Mol. Cell. Biochem. 447(1), 125–136 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Maio, N. et al. Mutation rates and selection on synonymous mutations in SARS-CoV-2. Genome Biol. Evol. 13(5), 87 (2021).


    Google Scholar
     

  • Shan, K.-J., Wei, C., Wang, Y., Huan, Q. & Qian, W. Host-specific asymmetric accumulation of mutation types reveals that the origin of SARS-CoV-2 is consistent with a natural process. Innovation. 2(4), 100159 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Correia de Sousa, M., Gjorgjieva, M., Dolicka, D., Sobolewski, C. & Foti, M. Deciphering miRNAs’ action through miRNA editing. Int. J. Mol. Sci. 20(24), 6249 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link