Light modulates task-dependent thalamo-cortical connectivity during an auditory attentional task

0
53


  • Brown, T. M. et al. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol. 20, e3001571 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisk, A. S. et al. Light and cognition: roles for circadian rhythms, sleep, and arousal. Front. Neurol. 9, 56 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell, I., Sharifpour, R. & Vandewalle, G. Light as a modulator of non-image-forming brain functions—positive and negative impacts of increasing light availability. Clocks Sleep 5, 116–140 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, T. M., Chen, S.-K. & Hattar, S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. 34, 572–580 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Güler, A. D. et al. Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision. Nature 453, 102–105 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaggioni, G., Maquet, P., Schmidt, C., Dijk, D.-J. & Vandewalle, G. Neuroimaging, cognition, light and circadian rhythms. Front. Syst. Neurosci. 8, 126 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hattar, S. et al. Central projections of melanopsin‐expressing retinal ganglion cells in the mouse. J. Comp. Neurol. 497, 326–349 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandewalle, G., Maquet, P. & Dijk, D. J. Light as a modulator of cognitive brain function. Trends Cogn. Sci. 13, 429–438 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Vandewalle, G. et al. Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem. PLoS ONE 2, e1247 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandewalle, G. et al. Wavelength-dependent modulation of brain responses to a working memory task by daytime light exposure. Cereb. Cortex 17, 2788–2795 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vandewalle, G. et al. Daytime light exposure dynamically enhances brain responses. Curr. Biol. 16, 1616–1621 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X. & Kastner, S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753–756 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guillery, R. W. & Sherman, S. M. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33, 163–175 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saper, C. B., Lu, J., Chou, T. C. & Gooley, J. The hypothalamic integrator for circadian rhythms. Trends Neurosci. 28, 152–157 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campbell, I. et al. Impact of light on task-evoked pupil responses during cognitive tasks. bioRxiv https://doi.org/10.1101/2023.04.12.536570 (2023).

  • Harsay, H. A., Spaan, M., Wijnen, J. G. & Ridderinkhof, K. R. Error awareness and salience processing in the oddball task: shared neural mechanisms. Front. Hum. Neurosci. 6, 246 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uncapher, M. R., Hutchinson, J. B. & Wagner, A. D. Dissociable effects of top-down and bottom-up attention during episodic encoding. J. Neurosci. 31, 12613–12628 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ardekani, B. A. et al. Functional magnetic resonance imaging of brain activity in the visual oddball task. Cogn. Brain Res. 14, 347–356 (2002).

    Article 

    Google Scholar
     

  • Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saranathan, M., Iglehart, C., Monti, M., Tourdias, T. & Rutt, B. In vivo high-resolution structural MRI-based atlas of human thalamic nuclei. Sci. Data 8, 1–8 (2021).

    Article 

    Google Scholar
     

  • Koralek, K.-A., Jensen, K. F. & Killackey, H. P. Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. Brain Res. 463, 346–351 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McFarland, N. R. & Haber, S. N. Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J. Neurosci. 20, 3798–3813 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edelstyn, N. M. J., Mayes, A. R. & Ellis, S. J. Damage to the dorsomedial thalamic nucleus, central lateral intralaminar thalamic nucleus, and midline thalamic nuclei on the right-side impair executive function and attention under conditions of high demand but not low demand. Neurocase 20, 121–132 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiehl, K. A. & Liddle, P. F. Reproducibility of the hemodynamic response to auditory oddball stimuli: a six‐week test–retest study. Hum. Brain Mapp. 18, 42–52 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Behrens, T. E. J. et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6, 750–757 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, E. G. The Thalamus 2nd edn (Cambridge University Press, 2007).

  • Roux, F., Wibra, M., Singer, W., Aru, J. & Uhlhaas, P. J. The phase of thalamic alpha activity modulates cortical gamma-band activity: evidence from resting-state MEG recordings. J. Neurosci. 33, 17827–17835 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandez, D. C., Chang, Y. T., Hattar, S. & Chen, S. K. Architecture of retinal projections to the central circadian pacemaker. Proc. Natl Acad. Sci. USA 113, 6047–6052 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pickard, G. E. The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection. J. Comp. Neurol. 211, 65–83 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liebe, T. et al. In vivo anatomical mapping of human locus coeruleus functional connectivity at 3 T MRI. Hum. Brain Mapp. 41, 2136–2151 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aston-Jones, G., Chen, S., Zhu, Y. & Oshinsky, M. L. A neural circuit for circadian regulation of arousal. Nat. Neurosci. 4, 732–738 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saper, C. B., Swanson, L. W. & Cowan, W. M. An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J. Comp. Neurol. 183, 689–706 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nascimento, E. S. Jr et al. Retinal projections to the thalamic paraventricular nucleus in the rock cavy (Kerodon rupestris). Brain Res. 1241, 56–61 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muscat, L. & Morin, L. P. Intergeniculate leaflet: contributions to photic and non-photic responsiveness of the hamster circadian system. Neuroscience 140, 305–320 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maleki, N., Becerra, L., Upadhyay, J., Burstein, R. & Borsook, D. Direct optic nerve pulvinar connections defined by diffusion MR tractography in humans: implications for photophobia. Hum. Brain Mapp. 33, 75–88 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Altimus, C. M. et al. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat. Neurosci. 13, 1107–1112 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saalmann, Y. B. & Kastner, S. Gain control in the visual thalamus during perception and cognition. Curr. Opin. Neurobiol. 19, 408–414 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halassa, M. M. & Kastner, S. Thalamic functions in distributed cognitive control. Nat. Neurosci. 20, 1669–1679 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bourgeois, A., Guedj, C., Carrera, E. & Vuilleumier, P. Pulvino-cortical interaction: an integrative role in the control of attention. Neurosci. Biobehav. Rev. 111, 104–113 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Seth, A. K., Barrett, A. B. & Barnett, L. Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 35, 3293–3297 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ketz, N. A., Jensen, O. & O’Reilly, R. C. Thalamic pathways underlying prefrontal cortex-medial temporal lobe oscillatory interactions. Trends Neurosci. 38, 3–12 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sherman, S. M. & Guillery, R. W. Exploring the Thalamus and Its Role in Cortical Function (MIT Press, 2006).

  • Aderneuer, T., Stefani, O., Fernández, O., Cajochen, C. & Ferrini, R. Circadian tuning with metameric white light: visual and non-visual aspects. Light. Res. Technol. 53, 543–554 (2021).

    Article 

    Google Scholar
     

  • Zaidi, F. H. et al. Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr. Biol. 17, 2122–2128 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandewalle, G. et al. Light modulates oscillatory alpha activity in the occipital cortex of totally visually blind individuals with intact non-image-forming photoreception. Sci. Rep. 8, 1–9 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lombardo, M. V. et al. Improving effect size estimation and statistical power with multi-echo fMRI and its impact on understanding the neural systems supporting mentalizing. Neuroimage 142, 55–66 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Erdfelder, E., FAul, F., Buchner, A. & Lang, A. G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Beck, A. T., Epstein, N., Brown, G. & Steer, R. A. An inventory for measuring clinical anxiety: psychometric properties. J. Consult. Clin. Psychol. 56, 893 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beck, A. T., Ward, C. H., Mendelson, M., Mock, J. & Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 4, 561–571 (1961).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buysse, D. J., Reynolds, C. F. III, Monk, T. H., Berman, S. R. & Kupfer, D. J. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 28, 193–213 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johns, M. W. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14, 540–545 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horne, J. A. & Östberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 4, 97–110 (1976).

  • Rosenthal, N. E. Seasonal pattern assessment questionnaire. J. Affect. Disord. (1984).

  • Parrott, A. C. & Hindmarch, I. Factor analysis of a sleep evaluation questionnaire. Psychol. Med. 8, 325–329 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Collette, F., Hogge, M., Salmon, E. & Van der Linden, M. Exploration of the neural substrates of executive functioning by functional neuroimaging. Neuroscience 139, 209–221 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vandewalle, G. et al. Spectral quality of light modulates emotional brain responses in humans. Proc. Natl Acad. Sci. 107, 19549–19554 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stevens, A. A., Skudlarski, P., Gatenby, J. C. & Gore, J. C. Event-related fMRI of auditory and visual oddball tasks. Magn. Reson. Imaging 18, 495–502 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathôt, S., Schreij, D. & Theeuwes, J. OpenSesame: an open-source, graphical experiment builder for the social sciences. Behav. Res. Methods 44, 314–324 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Andersson, J. L. R., Hutton, C., Ashburner, J., Turner, R. & Friston, K. Modeling geometric deformations in EPI time series. Neuroimage 13, 903–919 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. Fsl. Neuroimage 62, 782–790 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).


    Google Scholar
     

  • Zeidman, P. et al. A guide to group effective connectivity analysis, part 1: first level analysis with DCM for fMRI. Neuroimage 200, 174–190 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Giannetti, S. & Molinari, M. Cerebellar input to the posterior parietal cortex in the rat. Brain Res. Bull. 58, 481–489 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Amino, Y., Kyuhou, S., Matsuzaki, R. & Gemba, H. Cerebello–thalamo–cortical projections to the posterior parietal cortex in the macaque monkey. Neurosci. Lett. 309, 29–32 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friston, K., Zeidman, P. & Litvak, V. Empirical Bayes for DCM: a group inversion scheme. Front. Syst. Neurosci. 9, 164 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeidman, P. et al. A guide to group effective connectivity analysis, part 2: second level analysis with PEB. Neuroimage 200, 12–25 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Beckers, E. et al. Impact of repeated short light exposures on sustained pupil responses in an fMRI environment. bioRxiv https://doi.org/10.1101/2023.04.12.536600 (2023).



  • Source link