Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains


  • Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Prim. 1, 15020 (2015).

    Article 

    Google Scholar
     

  • Franke, B. et al. The genetics of attention deficit/hyperactivity disorder in adults, a review. Mol. Psychiatry 17, 960–987 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dalsgaard, S., Leckman, J. F., Mortensen, P. B., Nielsen, H. S. & Simonsen, M. Effect of drugs on the risk of injuries in children with attention deficit hyperactivity disorder: a prospective cohort study. Lancet Psychiatry 2, 702–709 (2015).

    Article 

    Google Scholar
     

  • Chang, Z., Lichtenstein, P., D’Onofrio, B. M., Sjolander, A. & Larsson, H. Serious transport accidents in adults with attention-deficit/hyperactivity disorder and the effect of medication: a population-based study. JAMA Psychiatry 71, 319–325 (2014).

    Article 

    Google Scholar
     

  • Babinski, D. E., Neely, K. A., Ba, D. M. & Liu, G. Depression and suicidal behavior in young adult men and women with ADHD: evidence from claims data. J. Clin. Psychiatry 81, 19m13130 (2020).

    Article 

    Google Scholar
     

  • Capusan, A. J., Bendtsen, P., Marteinsdottir, I. & Larsson, H. Comorbidity of adult ADHD and its subtypes with substance use disorder in a large population-based epidemiological study. J. Atten. Disord. 23, 1416–1426 (2019).

    Article 

    Google Scholar
     

  • Boomsma, D. I., van Beijsterveldt, T., Odintsova, V. V., Neale, M. C. & Dolan, C. V. Genetically informed regression analysis: application to aggression prediction by inattention and hyperactivity in children and adults. Behav. Genet. 51, 250–263 (2021).

    Article 

    Google Scholar
     

  • Dalsgaard, S., Ostergaard, S. D., Leckman, J. F., Mortensen, P. B. & Pedersen, M. G. Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: a nationwide cohort study. Lancet 385, 2190–2196 (2015).

    Article 

    Google Scholar
     

  • Jangmo, A. et al. Attention-deficit/hyperactivity disorder and occupational outcomes: the role of educational attainment, comorbid developmental disorders, and intellectual disability. PLoS ONE 16, e0247724 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, X. et al. Family burden of raising a child with ADHD. J. Abnorm. Child Psychol. 47, 1327–1338 (2019).

    Article 

    Google Scholar
     

  • Le, H. H. et al. Economic impact of childhood/adolescent ADHD in a European setting: the Netherlands as a reference case. Eur. Child Adolesc. Psychiatry 23, 587–598 (2014).

    Article 

    Google Scholar
     

  • Libutzki, B. et al. Direct medical costs of ADHD and its comorbid conditions on basis of a claims data analysis. Eur. Psychiatry 58, 38–44 (2019).

    Article 

    Google Scholar
     

  • Faraone, S. V. & Larsson, H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry 24, 562–575 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pedersen, C. B. et al. The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol. Psychiatry 23, 6–14 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mattheisen, M. et al. Identification of shared and differentiating genetic architecture for autism spectrum disorder, attention-deficit hyperactivity disorder and case subgroups. Nat. Genet. 54, 1470–1478 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Satterstrom, F. K. et al. Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nat. Neurosci. 22, 1961–1965 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pardinas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Trzaskowski, M. et al. Quantifying between-cohort and between-sex genetic heterogeneity in major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 180, 439–447 (2019).

    Article 

    Google Scholar
     

  • Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article 

    Google Scholar
     

  • Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234.e4 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xie, Z. et al. Gene set knowledge discovery with enrichr. Curr. Protoc. 1, e90 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article 
    CAS 

    Google Scholar
     

  • de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article 

    Google Scholar
     

  • Zhang, W. et al. Integrative transcriptome imputation reveals tissue-specific and shared biological mechanisms mediating susceptibility to complex traits. Nat. Commun. 10, 3834 (2019).

    Article 

    Google Scholar
     

  • Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Meuleman, W. et al. Index and biological spectrum of human DNase I hypersensitive sites. Nature 584, 244–251 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. 52, 1158–1168 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Watanabe, K., Umicevic Mirkov, M., de Leeuw, C. A., van den Heuvel, M. P. & Posthuma, D. Genetic mapping of cell type specificity for complex traits. Nat. Commun. 10, 3222 (2019).

    Article 
    CAS 

    Google Scholar
     

  • La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566–580.e19 (2016).

    Article 

    Google Scholar
     

  • Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat. Commun. 10, 2417 (2019).

    Article 

    Google Scholar
     

  • Franke, B. et al. Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan. Eur. Neuropsychopharmacol. 28, 1059–1088 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Satterthwaite, T. D. et al. Neuroimaging of the Philadelphia Neurodevelopmental Cohort. Neuroimage 86, 544–553 (2014).

    Article 

    Google Scholar
     

  • Calkins, M. E. et al. The Philadelphia Neurodevelopmental Cohort: constructing a deep phenotyping collaborative. J. Child Psychol. Psychiatry 56, 1356–1369 (2015).

    Article 

    Google Scholar
     

  • Gur, R. C. et al. Age group and sex differences in performance on a computerized neurocognitive battery in children age 8-21. Neuropsychology 26, 251–265 (2012).

    Article 

    Google Scholar
     

  • Wilkinson, G. S. & Robertson, G. J. Wide Range Achievement Test (WRAT4) (Psychological Assessment Resources, 2006).


    Google Scholar
     

  • Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Prim. 1, 59 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bataillon, T. et al. The effective size of the Icelandic population and the prospects for LD mapping: inference from unphased microsatellite markers. Eur. J. Hum. Genet. 14, 1044–1053 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Gazal, S. et al. Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection. Nat. Genet. 49, 1421–1427 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hindley, G. et al. The shared genetic basis of mood instability and psychiatric disorders: a cross-trait genome-wide association analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 189, 207–218 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Plana-Ripoll, O. et al. Exploring comorbidity within mental disorders among a Danish national population. JAMA Psychiatry 76, 259–270 (2019).

    Article 

    Google Scholar
     

  • Zablotsky, B., Bramlett, M. D. & Blumberg, S. J. The co-occurrence of autism spectrum disorder in children with ADHD. J. Atten. Disord. 24, 94–103 (2020).

    Article 

    Google Scholar
     

  • Jensen, C. M. & Steinhausen, H. C. Comorbid mental disorders in children and adolescents with attention-deficit/hyperactivity disorder in a large nationwide study. Atten. Defic. Hyperact. Disord. 7, 27–38 (2015).

    Article 

    Google Scholar
     

  • Chen, Q. et al. Common psychiatric and metabolic comorbidity of adult attention-deficit/hyperactivity disorder: a population-based cross-sectional study. PLoS ONE 13, e0204516 (2018).

    Article 

    Google Scholar
     

  • Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482.e11 (2019).

    Article 

    Google Scholar
     

  • Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Controls 19, 716–723 (1974).

    Article 

    Google Scholar
     

  • Yao, X. et al. Integrative analysis of genome-wide association studies identifies novel loci associated with neuropsychiatric disorders. Transl. Psychiatry 11, 69 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, E. C. et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 7, 1032–1045 (2020).

    Article 

    Google Scholar
     

  • Araujo, D. J. et al. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes Dev. 29, 2081–2096 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Fong, W. L., Kuo, H. Y., Wu, H. L., Chen, S. Y. & Liu, F. C. Differential and overlapping pattern of Foxp1 and Foxp2 expression in the striatum of adult mouse brain. Neuroscience 388, 214–223 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sollis, E. et al. Equivalent missense variant in the FOXP2 and FOXP1 transcription factors causes distinct neurodevelopmental disorders. Hum. Mutat. 38, 1542–1554 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Limited overlap of eQTLs and GWAS hits due to systematic differences in discovery. Preprint at bioRxiv https://doi.org/10.1101/2022.05.07.491045 (2022).

  • Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584.e23 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sazonovs, A. et al. Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility. Nat. Genet. 54, 1275–1283 (2021).

    Article 

    Google Scholar
     

  • Bahmani, Z. et al. Prefrontal contributions to attention and working memory. Curr. Top. Behav. Neurosci. 41, 129–153 (2019).

    Article 

    Google Scholar
     

  • Sonne, J., Reddy, V. & Beato, M. R. Substantia nigra. in StatPearls (StatPearls Publishing, 2021).


    Google Scholar
     

  • Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chang, S., Yang, L., Wang, Y. & Faraone, S. V. Shared polygenic risk for ADHD, executive dysfunction and other psychiatric disorders. Transl. Psychiatry 10, 182 (2020).

    Article 

    Google Scholar
     

  • Nigg, J. T. et al. Working memory and vigilance as multivariate endophenotypes related to common genetic risk for attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 57, 175–182 (2018).

    Article 

    Google Scholar
     

  • Aguilar-Lacasana, S. et al. Polygenic risk for ADHD and ASD and their relation with cognitive measures in school children. Psychol. Med. 52, 1356–1364 (2022).

    Article 

    Google Scholar
     

  • Martin, J., Hamshere, M. L., Stergiakouli, E., O’Donovan, M. C. & Thapar, A. Neurocognitive abilities in the general population and composite genetic risk scores for attention-deficit hyperactivity disorder. J. Child Psychol. Psychiatry 56, 648–656 (2015).

    Article 

    Google Scholar
     

  • Bybjerg-Grauholm, J. et al. The iPSYCH2015 case-cohort sample: updated directions for unravelling genetic and environmental architectures of severe mental disorders. Preprint at medRxiv https://doi.org/10.1101/2020.11.30.20237768 (2020).

  • Mors, O., Perto, G. P. & Mortensen, P. B. The Danish psychiatric central research register. Scand. J. Public Health 39, 54–57 (2011).

    Article 

    Google Scholar
     

  • Lynge, E., Sandegaard, J. L. & Rebolj, M. The Danish national patient register. Scand. J. Public Health 39, 30–33 (2011).

    Article 

    Google Scholar
     

  • Price, A. L. et al. The impact of divergence time on the nature of population structure: an example from Iceland. PLoS Genet. 5, e1000505 (2009).

    Article 

    Google Scholar
     

  • Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Greenbaum, J. & Deng, H. W. A statistical approach to fine mapping for the identification of potential causal variants related to bone mineral density. J. Bone Miner. Res. 32, 1651–1658 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Fine mapping causal variants with an approximate Bayesian method using marginal test statistics. Genetics 200, 719–736 (2015).

    Article 

    Google Scholar
     

  • Wang, J. et al. CAUSALdb: a database for disease/trait causal variants identified using summary statistics of genome-wide association studies. Nucleic Acids Res. 48, D807–D816 (2020).

    CAS 

    Google Scholar
     

  • Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article 
    CAS 

    Google Scholar
     

  • McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  • Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Okbay, A. et al. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nat. Genet. 54, 437–449 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mills, M. C. et al. Identification of 371 genetic variants for age at first sex and birth linked to externalising behaviour. Nat. Hum. Behav. 5, 1717–1730 (2021).

    Article 

    Google Scholar
     

  • Watanabe, K. et al. Genome-wide meta-analysis of insomnia prioritizes genes associated with metabolic and psychiatric pathways. Nat. Genet. 54, 1125–1132 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Als, T. D. et al. Identification of 64 new risk loci for major depression, refinement of the genetic architecture and risk prediction of recurrence and comorbidities. Preprint at medRxiv https://doi.org/10.1101/2022.08.24.22279149 (2022).

  • Ge, T., Chen, C. Y., Ni, Y., Feng, Y. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    Article 

    Google Scholar
     

  • Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article 

    Google Scholar
     



  • Source link

    Latest articles

    Related articles

    Discover more from Technology Tangle

    Subscribe now to keep reading and get access to the full archive.

    Continue reading

    0