More

    Anxiolytic effect of antidiabetic metformin is mediated by AMPK activation in mPFC inhibitory neurons


  • Grupe DW, Nitschke JB. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat Rev Neurosci. 2013;14:488–501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gross C, Hen R. The developmental origins of anxiety. Nat Rev Neurosci. 2004;5:545–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hudson JL. Prevention of anxiety disorders across the lifespan. JAMA psychiatry. 2017;74:1029–30.

    Article 
    PubMed 

    Google Scholar
     

  • Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, et al. Anxiety disorders. Nat Rev Dis Prim. 2017;3:17024.

    Article 
    PubMed 

    Google Scholar
     

  • Ammar G, Naja WJ, Pelissolo A.Treatment-resistant anxiety disorders: a literature review of drug therapy strategies.L’Encephale. 2015;41:260–265.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stein MB, Craske MG. Treating anxiety in 2017: optimizing care to improve outcomes. JAMA. 2017;318:235–6.

    Article 
    PubMed 

    Google Scholar
     

  • Duca FA, Côté CD, Rasmussen BA, Zadeh-Tahmasebi M, Rutter GA, Filippi BM, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med. 2015;21:506–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao B, Xiao Y, Song F, Long X, Huang J, Tian M, et al. Metformin-induced activation of AMPK inhibits the proliferation and migration of human aortic smooth muscle cells through upregulation of p53 and IFI16. Int J Mol Med. 2018;41:1365–76.

    CAS 
    PubMed 

    Google Scholar
     

  • Kessing LV, Rytgaard HC, Ekstrøm CT, Knop FK, Berk M, Gerds TA. Antidiabetes agents and incident depression: a nationwide population-based study. Diabetes Care. 2020;43:3050–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tu HP, Lin CH, Hsieh HM, Jiang HJ, Wang PW, Huang CJ. Prevalence of anxiety disorder in patients with type 2 diabetes: a nationwide population-based study in Taiwan 2000-2010. Psychiatr Q. 2017;88:75–91.

    Article 
    PubMed 

    Google Scholar
     

  • AlHussain F, AlRuthia Y, Al-Mandeel H, Bellahwal A, Alharbi F, Almogbel Y, et al. Metformin improves the depression symptoms of women with polycystic ovary syndrome in a lifestyle modification program. Patient Prefer Adherence. 2020;14:737–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen SC, Brooks R, Houskeeper J, Bremner SK, Dunlop J, Viollet B, et al. Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. Mol Cell Endocrinol. 2017;440:57–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coyle C, Cafferty FH, Vale C, Langley RE. Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann Oncol. 2016;27:2184–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Day EA, Ford RJ, Smith BK, Mohammadi-Shemirani P, Morrow MR, Gutgesell RM, et al. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat Metab. 2019;1:1202–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu YJ, Chern Y. AMPK-mediated regulation of neuronal metabolism and function in brain diseases. J Neurogenet. 2015;29:50–58.

    Article 
    PubMed 

    Google Scholar
     

  • Sarkaki A, Farbood Y, Badavi M, Khalaj L, Khodagholi F, Ashabi G. Metformin improves anxiety-like behaviors through AMPK-dependent regulation of autophagy following transient forebrain ischemia. Metab Brain Dis. 2015;30:1139–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brynildsen JK, Lee BG, Perron IJ, Jin S, Kim SF, Blendy JA. Activation of AMPK by metformin improves withdrawal signs precipitated by nicotine withdrawal. Proc Natl Acad Sci USA. 2018;115:4282–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zemdegs J, Martin H, Pintana H, Bullich S, Manta S, Marqués MA, et al. Metformin promotes anxiolytic and antidepressant-like responses in insulin-resistant mice by decreasing circulating branched-chain amino acids. J Neurosci. 2019;39:5935–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, An H, Liu T, Qin C, Sesaki H, Guo S, et al. Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep. 2019;29:1511–23.e1515.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol cell Biol. 2012;13:251–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27:299–313.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol cell. 2018;71:606–20.e607.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao F, Wang C, Zhu X. Isoform-specific roles of AMPK catalytic α subunits in Alzheimer’s disease. J Clin Investig. 2020;130:3403–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashabi G, Khodagholi F, Khalaj L, Goudarzvand M, Nasiri M. Activation of AMP-activated protein kinase by metformin protects against global cerebral ischemia in male rats: interference of AMPK/PGC-1α pathway. Metab Brain Dis. 2014;29:47–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim DM, Leem YH. Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction. Neuroscience. 2016;324:271–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu S, Wang J, Zhang Y, Li V, Kong J, He J, et al. Unpredictable chronic mild stress induces anxiety and depression-like behaviors and inactivates AMP-activated protein kinase in mice. Brain Res. 2014;1576:81–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wohleb ES, Powell ND, Godbout JP, Sheridan JF. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci. 2013;33:13820–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKim DB, Weber MD, Niraula A, Sawicki CM, Liu X, Jarrett BL, et al. Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Mol Psychiatry. 2018;23:1421–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinsey SG, Bailey MT, Sheridan JF, Padgett DA, Avitsur R. Repeated social defeat causes increased anxiety-like behavior and alters splenocyte function in C57BL/6 and CD-1 mice. Brain Behav Immun. 2007;21:458–66.

    Article 
    PubMed 

    Google Scholar
     

  • Grieger JC, Choi VW, Samulski RJ. Production and characterization of adeno-associated viral vectors. Nat Protoc. 2006;1:1412–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerhard DM, Pothula S, Liu RJ, Wu M, Li XY, Girgenti MJ, et al. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J Clin Investig. 2020;130:1336–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji G, Neugebauer V. Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics. Mol Brain. 2012;5:36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jinks AL, McGregor IS. Modulation of anxiety-related behaviors following lesions of the prelimbic or infralimbic cortex in the rat. Brain Res. 1997;772:181–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bannerman DM, Deacon RM, Offen S, Friswell J, Grubb M, Rawlins JN. Double dissociation of function within the hippocampus: spatial memory and hyponeophagia. Behav Neurosci. 2002;116:884–901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, et al. Anxiety cells in a hippocampal-hypothalamic circuit. Neuron. 2018;97:670–83.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleinridders A, Cai W, Cappellucci L, Ghazarian A, Collins WR, Vienberg SG, et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci USA. 2015;112:3463–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60:1577–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang CS, Li M, Ma T, Zong Y, Cui J, Feng JW, et al. Metformin activates AMPK through the Lysosomal pathway. Cell Metab. 2016;24:521–2.

    Article 
    PubMed 

    Google Scholar
     

  • Łabuzek K, Suchy D, Gabryel B, Bielecka A, Liber S, Okopień B. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep. 2010;62:956–65.

    Article 
    PubMed 

    Google Scholar
     

  • Fan J, Li D, Chen HS, Huang JG, Xu JF, Zhu WW, et al. Metformin produces anxiolytic-like effects in rats by facilitating GABA(A) receptor trafficking to membrane. Br J Pharmacol. 2019;176:297–316.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han Y, Luo Y, Sun J, Ding Z, Liu J, Yan W, et al. AMPK signaling in the dorsal hippocampus negatively regulates contextual fear memory formation. Neuropsychopharmacology. 2016;41:1849–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delli Pizzi S, Padulo C, Brancucci A, Bubbico G, Edden RA, Ferretti A, et al. GABA content within the ventromedial prefrontal cortex is related to trait anxiety. Soc Cogn Affect Neurosci. 2016;11:758–66.

    Article 
    PubMed 

    Google Scholar
     

  • Liu WZ, Zhang WH, Zheng ZH, Zou JX, Liu XX, Huang SH, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun. 2020;11:2221.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferguson BR, Gao WJ. Thalamic control of cognition and social behavior via regulation of Gamma-Aminobutyric Acidergic signaling and excitation/inhibition balance in the medial prefrontal cortex. Biol Psychiatry. 2018;83:657–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chattopadhyaya B, Di Cristo G, Higashiyama H, Knott GW, Kuhlman SJ, Welker E, et al. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J Neurosci. 2004;24:9598–611.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sollozo-DuPont I, Estrada-Camarena E, Carro-Juárez M, López-Rubalcava C. GABAA/benzodiazepine receptor complex mediates the anxiolytic-like effect of Montanoa tomentosa. J Ethnopharmacol. 2015;162:278–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Argalious M, Farag E. Pharmacologic agents in the perioperative period: new medications and new indications. Curr Pharm Des. 2019;25:2113–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas I, Gregg B. Metformin; a review of its history and future: from lilac to longevity. Pediatr Diabetes. 2017;18:10–16.

    Article 
    PubMed 

    Google Scholar
     

  • Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20:953–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv Z, Guo Y. Metformin and its benefits for various diseases. Front Endocrinol. 2020;11:191.

    Article 

    Google Scholar
     

  • Anderson KA, Ribar TJ, Lin F, Noeldner PK, Green MF, Muehlbauer MJ, et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 2008;7:377–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005;2:9–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Atasoy D, Su HH, Sternson SM. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell. 2011;146:992–1003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goto Y, Yang CR, Otani S. Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol Psychiatry. 2010;67:199–207.

    Article 
    PubMed 

    Google Scholar
     

  • Hains AB, Arnsten AF. Molecular mechanisms of stress-induced prefrontal cortical impairment: implications for mental illness. Learn Mem. 2008;15:551–64.

    Article 
    PubMed 

    Google Scholar
     

  • Nuss P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat. 2015;11:165–75.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloomfield C, French SJ, Jones DN, Reavill C, Southam E, Cilia J, et al. Chandelier cartridges in the prefrontal cortex are reduced in isolation reared rats. Synapse. 2008;62:628–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaiva G, Thomas P, Ducrocq F, Fontaine M, Boss V, Devos P, et al. Low posttrauma GABA plasma levels as a predictive factor in the development of acute posttraumatic stress disorder. Biol Psychiatry. 2004;55:250–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inan M, Zhao M, Manuszak M, Karakaya C, Rajadhyaksha AM, Pickel VM, et al. Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability. Neurobiol Dis. 2016;93:35–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kann O, Papageorgiou IE, Draguhn A. Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J Cereb Blood Flow Metab. 2014;34:1270–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kann O. The interneuron energy hypothesis: implications for brain disease. Neurobiol Dis. 2016;90:75–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lang F, Foller M. Regulation of ion channels and transporters by AMP-activated kinase (AMPK). Channels. 2014;8:20–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen KZ, Munhall AC, Johnson SW. Phosphoinositol metabolism affects AMP kinase-dependent K-ATP currents in rat substantia nigra dopamine neurons. Brain Res. 2019;1706:32–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikematsu N, Dallas ML, Ross FA, Lewis RW, Rafferty JN, David JA, et al. Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. Proc Natl Acad Sci USA. 2011;108:18132–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen MN, Krzystanek K, Jespersen T, Olesen SP, Rasmussen HB. AMP-activated protein kinase downregulates Kv7.1 cell surface expression. Traffic. 2012;13:143–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kréneisz O, Benoit JP, Bayliss DA, Mulkey DK. AMP-activated protein kinase inhibits TREK channels. J Physiol. 2009;587:5819–30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen W, Luo B, Gao N, Li H, Wang H, Li L et al. Neddylation stabilizes Nav1.1 to maintain interneuron excitability and prevent seizures in murine epilepsy models. J Clin Investig.2021;131:e136956.

  • Engelhardt M, di Cristo G, Grabert J, Patz S, Maffei L, Berardi N, et al. Leukemia inhibitory factor impairs structural and neurochemical development of rat visual cortex in vivo. Mol Cell Neurosci. 2017;79:81–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Latest articles

    Related articles

    Discover more from Blog | News | Travel

    Subscribe now to keep reading and get access to the full archive.

    Continue reading