More

    Exponentially index modulated nanophotonic resonator for high-performance sensing applications


  • Hlubina, P. High performance liquid analyte sensing based on Bloch surface wave resonances in the spectral domain. Opt. Laser Technol. 145, 107492 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Goyal, A. K., Kumar, A. & Massoud, Y. Thermal stability analysis of surface wave assisted bio-photonic sensor. Photonics 9, 324 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light 2nd edn. (Princeton University Press, 2008).

    MATH 

    Google Scholar
     

  • Goyal, A. K., Dutta, H. S. & Pal, S. Recent advances and progress in photonic crystal based gas sensors. J. Phys. D Appl. Phys. 50(20), 203001 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ahmed, A. M. & Mehaney, A. Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci. Rep. 9(1), 6973 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Goyal, A. K. Design analysis of one-dimensional photonic crystal-based structure for hemoglobin concentration measurement. Progress Electromagn. Res. M 97, 77–86 (2020).

    Article 

    Google Scholar
     

  • Goyal, A. K. & Pal, S. Design analysis of Bloch surface wave-based sensor for haemoglobin concentration measurement. Appl. Nanosci. 10(9), 3639–3647 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kaviani, H. & Barvestani, J. Photonic crystal-based biosensor with the irregular defect for detection of blood plasma. Appl. Surf. Sci. 599, 153743 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Goyal, A. K. & Massoud, Y. Interface edge mode confinement in dielectric-based quasi-periodic photonic crystal structure. Photonics 9, 676 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Giden, I. H. Photonic crystal based interferometric design for label-free all-optical sensing applications. Opt. Express 30, 21679–21686 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zaky, Z. A., Panda, A., Pukhrambam, P. D. & Aly, A. H. The impact of magnetized cold plasma and its various properties in sensing applications. Sci Rep. 12, 3754 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aly, A. H. et al. Photonic crystal enhanced by metamaterial for measuring electric permittivity in ghz range. Photonics 8(10), 416 (2021).

    Article 

    Google Scholar
     

  • Goyal, A. K. & Saini, J. Performance analysis of Bloch surface wave-based sensor using transition metal dichalcogenides. Appl. Nanosci. 196, 4307 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Singh, B. K. & Pandey, P. C. Influence of graded index materials on the photonic localization in one-dimensional quasiperiodic (Thue-Mosre and Double-Periodic) photonic crystals. Opt. Commun. 333, 84–91 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, Q., Jin, L. & Fu, Y. Graded index photonic crystals: A review. Ann. Phys. 527, 205–218 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ren, K. & Ren, X. Controlling light transport by using a graded photonic crystal. Appl Opt. 50, 25 (2011).

    Article 

    Google Scholar
     

  • Centeno, E. & Cassagne, D. Graded photonic crystals. Opt. Lett. 30, 2278–2280 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Centeno, E., Cassagne, D. & Albert, J. P. Mirage and superbending effect in two dimensional graded photonic crystals. Phys. Rev. B. 73(23), 235119 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Kurt, H., Oner, B. B., Turduev, M. & Giden, I. H. Modified Maxwell fish-eye approach for efficient coupler design by graded photonic crystals. Opt. express. 20(20), 22018–22033 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Turduev, M., Giden, I. H. & Kurt, H. Design of flat lens-like graded index medium by photonic crystals: Exploring both low and high frequency regimes. Opt. Commun. 339, 22–33 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Turduev, M., Oner, B., Giden, I. & Kurt, H. Mode transformation using graded photonic crystals with axial asymmetry. J. Opt. Soc. Am. B 30, 1569–1579 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oner, B. B., Turduev, M., Giden, I. H. & Kurt, H. Efficient mode converter design using asymmetric graded index photonic structures. Opt. Lett. 38(2), 220–222 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yilmaz, D., Giden, I. H., Turduev, M. & Kurt, H. Design of a wavelength selective medium by graded index photonic crystals. IEEE J. Quant. Electron. 49(5), 477–484 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roux, L. et al. Wavelength demultiplexer based on a two-dimensional graded photonic crystal. IEEE Photon. Tech. L. 23(15), 1094–1096 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Yogesh, N. & Subramanian, V. Spatial beam compression and effective beam injection using triangular gradient index profile photonic crystals. Prog. Electromagn. Res. 129, 51–67 (2012).

    Article 

    Google Scholar
     

  • Lu, M. et al. Beam aperture modifier and beam deflector using gradient-index photonic crystals. J. Appl. Phys. 108(103505), 10 (2010).


    Google Scholar
     

  • Savotchenko, S. E. Temperature-controlled waveguide properties of the linearly graded-index film in the photorefractive crystal. Appl. Phys. B 129, 7. https://doi.org/10.1007/s00340-022-07950-4 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Savotchenko, S. E. Surface waves propagating along the interface between parabolic graded-index medium and photorefractive crystal with diffusion nonlinearity. Phys. B 648, 414434 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Rauh, H., Yampolskaya, G. I. & Yampolskii, S. V. Optical transmittance of photonic structures with linearly graded dielectric constituents. New J. Phys. 12, 073033 (2010).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Singh, B. K., Bijalwan, A., Pandey, P. C. & Rastogi, V. Multi-channel photonic bandgap consequences in one-dimensional linear, exponential, and hyperbolic graded-index photonic crystals. J. Opt. Soc. Am. B 37(2), 523 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Singh, B. K., Bambole, V., Rastogi, V. & Pandey, P. C. Multi-channel photonic bandgap engineering in hyperbolic graded index materials embedded one-dimensional photonic crystals. Opt. Laser Technol. 129, 106293 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rauh, H., Yampolskaya, G. I. & Yampolskii, S. V. Optical transmittance of photonic structures with logarithmically similar dielectric constituents. J. Opt. 14, 015101 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Ratra, K., Singh, M. & Goyal, A. K. Design and analysis of omni-directional solar spectrum reflector using one-dimensional photonic crystal. J. Nanophoton. 14, 026005 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ratra, K. et al. Design and analysis of broadband reflector for passive radiative cooling. In 2019 International Conference on Signal Processing and Communication (ICSC), 300–303 (2019).

  • Goyal, A. K., Dutta, H. S. & Pal, S. The porous photonic crystal structure for sensing applications. J. Nanophoton. 12(04), 1. https://doi.org/10.1117/1.jnp.12.040501 (2018).

    Article 

    Google Scholar
     

  • Goyal, A. K., Dutta, H. S., & Pal, S. Porous multilayer photonic band gap structure for optical sensing. In 13th International Conference on Fiber Optics and Photonics, OSA Technical Digest (online). paper Tu4A.12 (2016).

  • Yeh, P. & Hendry, M. Optical waves in layered media. Phys. Today 43(1), 77 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Panda, A. & Pukhrambam, P. D. Design and analysis of one-dimensional photonic crystal biosensor device for identification of cancerous cells. In Next Generation Smart Nano-Bio-Devices. Smart Innovation, Systems and Technologies vol 322 153 (Springer, 2023).

    Chapter 

    Google Scholar
     

  • Sayed, H., Alamri, S., Matar, Z. & Aly, A. H. Salinity sensor based on 1D photonic crystals by tamm resonance with different geometrical shapes. Plasmonics 17(1), 409–422 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, S. & Kumar, A. Design of a biosensor for the detection of dengue virus using 1D photonic crystals. Plasmonics 17(2), 675–680 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Taya, S. A., Sharma, A., Doghmosh, N. & Colak, I. Detection of water concentration in ethanol solution using a ternary photonic crystal-based sensor. Mater. Chem. Phys. 279, 125772 (2022).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Latest articles

    spot_imgspot_img

    Related articles

    Leave a reply

    Please enter your comment!
    Please enter your name here

    spot_imgspot_img